г. Нижний Новгород, ул. Зайцева, д. 31

413-19-81
413-66-50

[email protected]

Схема зарядного устройства с регулировкой напряжения и тока


Три простые схемы регулятора тока для зарядных устройств

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.

Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

Выход операционного усилителя управляется мощным полевым транзистором.

То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.

Взамен будет нагреваться транзистор и от этого никуда не денешься.

Архив к статье; скачать…

Автор; АКА Касьян

xn--100--j4dau4ec0ao.xn--p1ai

ЗУ на 12 В с регулируемым зарядным током

Как всегда неожиданно пришли холода и снова пришло понимание, что нужно купить для аккумулятора машины зарядный выпрямитель. Все знают, что мороз не нравится батареям, а потому подзаряжать их от сети 220 В приходится чаще. Решено было не инвестировать в дешевые китайские автозарядки из супермаркетов, а попытаться что-то сделать самому.

Зарядное устройство должно заряжать / перезаряжать аккумулятор в автомобиле и на мотоцикле. Предполагалось также, что регулировка тока зарядки будет относительно простой в исполнении, потому что не каждый понимает настройки всяких там HTRC T240. Чтобы плавно настраивать ток, можно использовать эту очень простую схему:

Здесь используются обычные резисторы 0.125 Вт, но решено было поставить 0.5 Вт, из-за высокого напряжения. Также добавлен в схему также второй предохранитель на вторичной стороне трансформатора (10 A) на всякий случай, конденсатор фильтра 2200 мкФ 25 В и вольтметр со шкалой до 20 вольт. Диодный мост KBPC2510. Остальное, как на принципиальной схеме.

Выбор трансформатора для зарядного

В гараже нашелся какой-то старый советский трансформатор 15 В 120 VA и решено было использовать именно его в качестве основы для сборки выпрямителя.

В целом выпрямитель работает очень хорошо. После подключения лампы h5 55/60w напряжение падает примерно до 12 В, и это тоже неплохо. Это первый вариант зарядного, во втором (сделанном на заказ) использовался тороидальный трансформатор 100W 11V 9A (предназначенный для питания галогенок), и после выпрямителя там получалось более 15 В на конденсаторе. Теоретически достаточно подключить к цепи вторичного питания (после диодов моста) конденсатор около 100 мкФ / 25 В и измерить напряжение на нем, если оно достигнет 16-17 В все нормально и вы можете безопасно построить на этом трансформаторе ЗУ к АКБ.

Важно: трансформатор должен давать номинальное напряжение 12 В при нагрузке, а не 12 В на холостом ходу — это напряжение слишком низкое. Если мы используем двухтактный выпрямитель — напряжение будет около 16 В. Использование диодов Шоттки даст еще больше прирост — до 17 В. Напряжение сетки также важно — если намного меньше 220 В — не будем иметь достаточного напряжения.

Если при нагрузке напряжение падает до 12-13 В, батарея не будет полностью заряжена. Для выпрямителя требуемое напряжение составляет около 16 В! Хотя правильное зарядное напряжение — 13,8 В — 14,4 В, рекомендуется с учётом просадки на пару вольт подавать выше.

Полезное:  Переводим LED светильник на Li-Ion питание

Естественно при управлении симистором в первичной обмотке присутствует постоянная составляющая тока, приводящая к насыщению сердечника и многим другим нежелательным явлениям, таким как гудение трансформатора. Большинство трансформаторов, питающихся таким образом, имеют более-менее проявляющиеся подобные симптомы, но лишь немногие не подходят вообще. В конце концов их можно устранить или заметно ослабить (силовые резисторы). Или вообще изменить тип контроля зарядного тока на такой.

1- 5,00

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

2shemi.ru

Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

Предлагается вариант изготовления зарядного устройства аккумуляторов для бытовых приборов, с установкой тока и напряжения зарядки, со стабилизацией тока на нагрузке.

При периодическом проживании в летнем доме, иногда появляется необходимость в подзарядке различных источников питания для часов, приемника, фонарика. Кроме того, требуют заряда и Li-ion аккумуляторы от старых мобильных телефонов, используемые в изготовленных ранее самоделках. Учитывая то, что используемые аккумуляторы имеют различную форму, габариты и присоединительные размеры, а также различные режимы заряда, необходимо изготовить, в какой-то мере, универсальное зарядное устройство (ЗУ). Так как это ЗУ будет использоваться лишь периодически, изготовлять или приобретать специализированные ЗУ для каждого вида аккумуляторов не имеет смысла.

В связи с этим, для зарядки различных маломощных аккумуляторов, изготовим единое, упрощенное, но надежное зарядное устройство. При зарядке аккумуляторов под периодическим визуальным контролем над окончанием заряда, имея возможность установки режимов (величина стабильного тока и предельное напряжение заряда) такое ЗУ обеспечит качественную работу.Процесс изготовления зарядного устройства для выполнения поставленной задачи рассмотрен ниже.

1. Установка исходных данных.

Для правильной эксплуатации никель-металлогидридных аккумуляторов рекомендуется поддерживать рабочее напряжение на элементах в пределах 1,2…1,4 вольта, допускается предельное снижение до 0,9 вольта. Быструю зарядку NiMH элементов батарей рекомендуется проводить при напряжении 0,8…1,8 вольта, с величиной тока заряда в интервале 0,3…0,5С.Рабочее напряжение для Li-ion аккумулятора 3,0...3,7 вольта. Зарядку аккумулятора необходимо выполнять до предельного напряжения 4,2 вольта, с током заряда в интервале 0,1...0,5С (до 450 mA при емкости аккумулятора 900 mAh).

Учитывая рекомендации, установим следующие характеристики изготовляемого ЗУ:

Выходное напряжение 1,3...1,8 вольта (для NiMH аккумулятора).Выходное напряжение 3,5...4,2 вольта (для Li-ion аккумулятора).Выходной ток (регулируемый) – 100...400 mA (…900 mA).Входное напряжение - 9...12 вольт.Входной ток - 400 mA (1000 mA).2. Источник тока. В качестве источника тока для ЗУ применим мобильный адаптер 220/9 вольт, 400 mA. Можно использовать более мощный адаптер (например, 220/1,6...12 вольт, 1000 mA). При этом изменений в конструкции ЗУ не потребуется.

3. Схема зарядного устройства.

Схема ЗУ проста в изготовлении и наладке, не имеет дефицитных и дорогих деталей. Устройство позволяет заряжать различные аккумуляторы стабильным, заранее установленным, током. А также, до начала зарядки, можно установить предельное напряжение, выше которого оно не поднимется на клеммах аккумулятора, в течении всего процессе зарядки.Изготовим ЗУ по схеме.

4. Описание работы схемы ЗУ.

Узел управления выходным током построен на силовом составном транзисторе VТ1. Максимальную величину выходного тока заряда ограничивает низкоомный резистор R7 (при номиналах деталей указанных на схеме и соответствующем по мощности блоке питания, максимальный ток заряда Li-ion аккумулятора достигает 1,2 А). При отсутствии резистора, необходимого сопротивления и мощности, его можно собрать из нескольких дешевых и распространённых резисторов. Например, в приведенной конструкции, трехваттный резистор R7 сопротивлением 3,4 Ом собран из двух последовательно соединенных групп, по три параллельно включенных резистора МЛТ-1 сопротивлением 5,1 Ом.На транзисторе VТ2 и резисторах R5, R6 реализован стабилизатор и регулятор зарядного тока. Переменный резистор R6 включен параллельно ограничительному резистору R7 и является датчиком тока. Ток через резистор R6 пропорционален току через резистор R7, но благодаря соотношению сопротивлений имеет значительно меньшую величину, что позволяет управлять выходным током с помощью переменного резистора и транзистора малой мощности.Под нагрузкой, на датчике тока появляется падение напряжения, пропорциональное проходящему току. При изменении тока зарядки, по различным причинам, соразмерно изменяется падение напряжения на R6 и соответственно управляющее напряжение на базе транзистора VТ2. При увеличении напряжения на базе VТ2, увеличивается ток К-Э транзистора VT2, снижая напряжение на базе VТ1. При этом, силовой транзистор VT1 начинает закрываться, уменьшая зарядный ток аккумулятора. И наоборот, при уменьшении напряжения на базе VТ2, зарядный ток увеличивается. Таким образом, осуществляется автоматическая корректировка тока в нагрузке - стабилизация тока заряда.Изменяя сопротивление резистора R6, мы можем установить необходимый ток заряда аккумулятора. После регулировки, происходят аналогичные процессы стабилизации вновь установленного тока.Узел установки предельного напряжения выполнен на регулируемом стабилизаторе напряжения DA1 (TL431). Подбирая сопротивление резисторов R3 и R4, выбираем оптимальный диапазон регулирования напряжения. С помощью переменного резистора R4 устанавливаем предельное напряжение на выходе (до подключения аккумулятора к ЗУ).При подсоединении разряженного аккумулятора к ЗУ, напряжение на выходе понижается. Через аккумулятор начинает проходить ток, установленный с помощью резистора R6. По мере заряда и повышения напряжения на аккумуляторе, потенциал на управляющем электроде стабилитрона DA1 приближается к 2,5 вольт, стабилитрон TL431 начинает открываться. При этом, напряжение на базе VТ1 постепенно понижается, силовой транзистор закрывается, а ток зарядки, протекающий по нему, постепенно уменьшаться практически до нуля.В разъем Х2 включается амперметр (мультиметр) для установки и контроля зарядного тока, при зарядке однотипных элементов вместо него устанавливается перемычка. Разъем Х3 используется для установки Li-ion аккумулятора от мобильного телефона. В разъем Х4 возможно установить аккумуляторы цилиндрической формы различной длины, с напряжением 1,2…1,4 вольта. Диоды VD1 и VD2 включены в цепь разъема X4, для понижения напряжения заряда аккумулятора до 1,3...1,8 вольта и предотвращения разряда аккумуляторов при отключении ЗУ. С помощью выносных щупов с зажимом, можно подключить для зарядки нестандартный аккумулятор с рабочим напряжением до 6… 9 вольт.

5. Изготовление корпуса зарядного устройства

Для корпуса ЗУ используем пластмассовую крышку от старого реле, размерами 90 х 60 х 65 мм. Усиливаем корпус панелью из текстолита для установки разъемов. Сверлим необходимые крепежные отверстия.

6. Комплектуем корпус разъемами и изготовляем нестандартные элементы.

7. Собираем корпус с навесными элементами. На задней панели расположены разъемы - контрольный Х2 (внизу) и входной Х1для соединения с адаптером питания ЗУ. Наверху корпуса расположена панель для установки Li-ion аккумулятора.

8. На передней стороне ЗУ закреплены ложемент и контакты для установки цилиндрических аккумуляторов.

9. Комплектуем ЗУ деталями согласно приведенной схеме.Откладываем детали, имеющие большое тепловыделение. В данном случае это силовой транзистор VТ1 на радиаторе и сборный резистор R7, составленный из шести резисторов меньшей мощности. Для улучшения температурного режима, собираем эти детали на отдельной плате. Остальные детали устанавливаем и распаиваем на второй плате.Размеры плат определяются внутренними размерами корпуса и их расположением в объеме корпуса. Определившись с расположением плат, сверлим в корпусе отверстия под переменные сопротивления и вентиляционные отверстия для отвода тепла. 10. Сборка ЗУСогласно схеме ЗУ собираем вместе силовую и управляющую платы, проверяем работоспособность схемы. Устанавливаем и закрепляем все комплектующие ЗУ в корпусе. Для исключения возможного электрического контакта, изолируем от окружения управляющую плату пластмассовым колпачком. Собираем конструкцию ЗУ в целом и проверяем работу устройства. 11. Работа зарядного устройства.До подключения Li-ion аккумулятора к ЗУ, с помощью переменного резистора R4 (регулировка напряжения) устанавливаем предельное напряжение заряда на выходных клеммах для этого аккумулятора. Подключаем аккумулятор, напряжение на выходе понижается до остаточного напряжения на аккумуляторе. Регулировкой сопротивления резистора R6 (регулировка тока), устанавливаем необходимый зарядный ток.При установке элемента аккумулятора цилиндрической формы, процесс выбора режимов аналогичен.При включении ЗУ, до установки аккумулятора, открывается стабилизатор напряжения DA1 (напряжение на управляющем электроде стабилитрона выше 2,5 вольт) и загорается светодиод LED2 (красный индикатор, слева). Подключаем аккумулятор, напряжение на выходе понижается. Начинается зарядка установленным стабильным током. Светодиод LED2 гаснет. В зависимости от установленного тока, возможно некоторое свечение светодиода LED3 (красный индикатор, справа).При достижении выставленного напряжения, заряд продолжается при этом напряжении, но с уменьшающимся током заряда. Яркость светодиода LED3 возрастает, включается светодиод LED2. Максимальная яркость светодиодов LED2 и LED3 указывает на минимальный зарядный ток, свойственный окончанию зарядки аккумулятора. Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Стабилизатор тока для зарядки аккумулятора - простая схема

Чтобы собрать даже самый простой стабилизатор напряжения к зарядному устройству необходимо обладать хоть маломальскими знаниями по физике. Иначе сложно будет понять зависимость физических величин, например, то, как по мере заряда сопротивление аккумулятора увеличивается, ток заряда падает и напряжение растет.

Простое зарядное устройство стабилизатор тока из подручных материалов

Существует огромное число готовых схем и конструкций, позволяющих заряжать автомобильный аккумулятор. Эта статья на тему переделки компьютерного блока питания под автоматическое зарядное устройство автомобильного аккумулятора. В ней рассказывается о том, как собрать автоматический стабилизатор тока с возможностью регулировки выходного тока.

Схема стабилизатора, используемая в нашем собираемом зарядном устройстве, довольно проста и основана на базе операционного усилителя (ОУ) без обратной связи с большим коэффициентом усиления.

В качестве такого операционного усилителя, или правильнее будет его назвать компаратором, используется микросхема LM358. На изображении видно, что она имеет:

  • два входа (инвертирующий и неинвертирующий);
  • один выход.

Задача LM358 состоит в том, чтобы сбалансировать параметры на выходе путём увеличения или уменьшения напряжения на входах.

Зарядное устройство или простой стабилизатор – это прибор, который:

  • сглаживает пульсации сети;
  • поддерживает прямую линию графика тока на одном уровне.

Как это осуществляется? В нашем случае на один вход подаётся опорное напряжение, задаваемое с помощью стабилитрона. Второй вход подключен после шунта, предназначенного для роли датчика тока. Когда подключается к выходу разряженный аккумулятор, в цепи возрастает ток и соответственно возникает падение напряжения на низкоомном резисторе. На микросхеме LM358 появляется разность напряжений между двумя входами. Устройство стремится сбалансировать эту разность, тем самым увеличивая параметры на выходе.

Глядя на схему мы видим, что на выход подключен полевой транзистор, который управляет нагрузкой. По мере заряда аккумулятора на клеммах устройства начинает повышаться напряжение, следовательно, начинает расти оно и на одном из входов ОУ. Возникает разность напряжений между входами, которую ОУ пытается выровнять путём уменьшения напряжения на выходе, тем самым уменьшая ток в основной цепи.

В итоге, аккумулятор заряжается до нужного напряжения, то есть выставленного значения на клеммах зарядного устройства. Падение напряжения на резисторе R3 становится минимальным, либо его не будет вообще. При выравнивании напряжения на входах транзистор закрывается, тем самым отключая нагрузку от зарядного устройства.

Особенностью данной схемы является то, что она позволяет ограничивать ток заряда. Делается это с помощью переменного резистора, который включён последовательно в делитель. И собственно поворачивая ручку этого резистора можно изменять параметры на одном из входов. Возникающую разность опять же выравнивают путём увеличения либо уменьшения параметров.

Универсальных схем не бывает. Кого-то интересует вопрос увеличения тока нагрузки. Например, что нужно поменять в схеме для 15 А? Необходимо будет поставить переменник не 5, а 10 кОм. Так же сделав предварительный расчёт и заменив соответствующие элементы, можно запросто настроить схему под свои нужды.

Сборка устройства

Конечно, интересно посмотреть на готовое самодельное изделие, тогда приступим к сборке устройства. В интернет-магазинах существует много компактных плат под эту схему. Стоимость деталей для сборки данного стабилизатора напряжения обойдётся менее двухсот рублей. Если покупать готовый стабилизатор напряжения, придется заплатить в несколько раз больше.

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться. Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания. И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.

Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.

Зарядка для аккумулятора. (часть2) Стабилизатор тока автоматический.

(17 оценок, среднее: 4,06 из 5)

ostabilizatore.ru

Регулятор тока зарядного устройства

В конструкции самодельного зарядного устройства для автомобильного аккумулятора важной частью является узел стабилизации и ограничения тока. Такой узел дает возможность выставить любой угодный ток заряда, при этом будет делать это за счет повышения или понижения выходного напряжения.

Схема предложенная в статье может отлично работать в совместимости с любым зарядным устройством.

Вариант реализации такого блока до безобразия прост  и собран на одном элементе ОУ. Зарядное устройство должно отдавать напряжение 13,5-14,5 Вольт при токе до 10 Ампер.

Полевой транзистор – основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливают на теплоотвод.

Можно использовать низковольтные полевые транзисторы с током от 20 , а еще лучше от 40 Ампер. Для наших целей отлично подойдут мощные N- канальные полевые транзисторы типа IRF3205, IRFZ44/46/48 iили аналогичные.

Силовой шунт в моем случая в виде низкоомного резистора, если кому лень искать, можете использовать шунт , который стоит в дешевых китайских мультиметрах, такие шунты можно использовать для довольно точных замеров при токах до 10-14Ампер.

Полевой транзистор при желании можно заменить на биполярный, но с учетом того, что последний должен иметь большой ток коллектора, к примеру КТ819ГМ или КТ8101 из наших , тоже устанавливают на теплоотвод.

ОУ в моем варианте задействован сдвоенный , типа ЛМ358, но можно использовать и одиночные операционные усилители, к примеру – TL071/081

Автор; АКА Касьян

xn----7sbgjfsnhxbk7a.xn--p1ai

Регулятор тока зарядного устройства

Иногда собирая самодельное зарядное устройство для автомобильного аккумулятора, мы не задумываемся о такой важной функции, как ограничитель тока. Зачем нужен токовый ограничитель ? Это своего рода регулятор, который позволяет уменьшить или увеличить ток заряда аккумулятора, при этом напряжение зарядки остается прежним.

Такой функцией снабжены все дорогие зарядные устройства, но на рынке немало зарядников, которые задают ток заряда автоматическим образом, но это не есть хорошо, поскольку человеческие мозги лучше любого контроллера и выставить нужны ток заряда аккумулятора вручную более желательно.

Схема довольно проста, силовой частью является транзистор KT837, им управляет транзистор средней мощности КТ814. Максимальный отдаваемый ток такого ограничителя составляет до 2-х Ампер, но разумеется это не предел для схемы. Только заменой резистора 1Ом и силового транзистора КТ837 можно снять до 7-10 Ампер.

Для этого резистор нужно будет заменить на 0,1-0,33Ом с мощностью не менее 20 Ватт, можно и на 10, но перегрев идет очень сильный. Транзистор можно заменить на КТ818ГМ или импортный аналог. Транзистор обязательно устанавливают на теплоотвод, возможно будет нужда в принудительном охлаждении. Резистор R2 для регулировки выходного тока желательно использовать на 1 ватт.

Стабилитрон можно заменить на импортный, желательно с мощностью в 1 ватт.  Устройством можно дополнить любой самодельный блок питания, который не имеет ограничителя по току.

. Автор: АКА КАСЬЯН

.

xn----7sbbil6bsrpx.xn--p1ai


Смотрите также