г. Нижний Новгород, ул. Зайцева, д. 31

413-19-81
413-66-50

[email protected]

Прямой угол фото


Прямой угол. Построение прямого угла. Видеоурок. Математика 2 Класс

 Посмотрите на картинку. (Рис. 1)

Рис. 1. Иллюстрация к примеру

Из каких знакомых вам геометрических фигур она состоит?

Конечно, вы увидели, что картинка состоит из треугольников и прямоугольников. Какое слово спряталось в названии обеих этих фигур? Это слово – угол (рис. 2).

Рис. 2. Определение угла

Сегодня мы будем учиться чертить прямой угол.

В названии этого угла уже есть слово «прямой». Чтобы правильно изобразить прямой угол, нам понадобится угольник. (Рис. 3)

Рис. 3. Угольник

В самом угольнике уже есть прямой угол. (Рис. 4)

Рис. 4. Прямой угол

Он и поможет нам изобразить эту геометрическую фигуру.

Чтобы правильно изобразить фигуру, мы должны приложить угольник к плоскости (1), обвести его стороны (2), назвать вершину угла (3) и лучи (4).

1.

2.

3.

4.

Давайте определим, есть ли среди имеющихся углов прямые (Рис. 5). В этом нам поможет угольник.

Рис. 5. Иллюстрация к примеру

Найдем прямой угол угольника и приложим его к имеющимся углам (рис. 6).

Рис. 6. Иллюстрация к примеру

Мы видим, что прямой угол совпал с углом ВОМ. Это значит, что угол ВОМ прямой. Проделаем эту же операцию еще раз. (Рис. 7)

Рис. 7. Иллюстрация к примеру

Мы видим, что прямой угол нашего угольника не совпал с углом СOD. Это значит, что угол COD не прямой. Еще раз приложим прямой угол угольника к углу АОТ. (Рис. 8)

Рис. 8. Иллюстрация к примеру

Мы видим, что угол АОТ гораздо больше, чем прямой угол. Это значит, что угол АОТ не является прямым.

На этом уроке мы учились строить прямой угол с помощью угольника.

Слово «угол» дало название многим вещам, а также геометрическим фигурам: прямоугольник, треугольник, угольнику, с помощью которого можно начертить прямой угол.

Треугольник – это геометрическая фигура, которая состоит из трех сторон и трех углов. Треугольник, у которого есть прямой угол, называется прямоугольным треугольником.

Список литературы

  1. Александрова Э.И. Математика. 2 класс. – М.: Дрофа, 2004.
  2. Башмаков М.И., Нефёдова М.Г. Математика. 2 класс. – М.: Астрель, 2006.
  3. Дорофеев Г.В., Миракова Т.И. Математика. 2 класс. – М.: Просвещение, 2012.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Сайт учителя начальных классов Сиразетдиновой Ляйсан Зуфаровны (Источник).
  2. Социальная сеть работников образования nsportal.ru (Источник).
  3. Социальная сеть работников образования nsportal.ru (Источник).

Домашнее задание

1. Выберите из предложенных углов прямые:

Рис. 9

2. Докажите, что изображенный на рисунке 10 угол – прямой.

Рис. 10

Page 2

На данном уроке мы обсудим тему «Письменные приемы сложения вида 87+13». Научитесь выполнять письменное сложение, получая в сумме круглое число. Рассмотрите письменный прием сложения в столбик двузначных чисел, сумма которых дает в итоге круглое число.

Урок: Письменные приёмы сложения вида 87 + 13

Давайте найдем сумму чисел 87 и 13. Число 13 можно представить как сумму чисел 10 и 3.

Рис. 1.

Чтобы к сумме двух чисел прибавить третье число, достаточно к числу прибавить сумму второго и третьего чисел.

Теперь, используя сочетательный закон сложения, сгруппируем слагаемые по-другому. Сначала найдем сумму 87 и 10, а потом к полученному числу прибавим 3.

87 + 13 = 87 + (10 + 3) = (87 + 10) + 3 = 97 + 3 = 100

Так вычислять можно, но долго. Давайте найдем более удобный способ вычисления.

Эти же вычисления можно выполнить письменно, то есть в столбик. Давайте вспомним правила записи чисел в столбик. Числа записываются друг под другом. Первое слагаемое сверху, второе слагаемое под ним. Под разрядом единиц первого числа записывается разряд единиц второго числа. Под разрядом десятков первого числа записываем разряд десятков второго числа. Знак сложения ставим слева, а знак равенства заменяем чертой. (Рис. 2.)

Рис. 2.

Письменные вычисления начинаются с наименьшего разряда. 7 + 3 = 10. Число 10 – это 1 десяток и 0 единиц.  Под разрядом единиц пишем 0, а 1 десяток мы отдаем разряду десятков. Это мы показываем цифрой 1, записанной над разрядом десятков. (Рис. 3.)

Рис. 3.

Теперь переходим к вычислениям в разряде десятков. 8 + 1 = 9 и еще прибавляем 1 десяток. 9 + 1 = 10. Записываем число 10 в разряде десятков. (Рис. 4.)

Рис. 4.

Выполним следующее задание. Некоторые цифры спрятаны, давайте восстановим запись. (Рис. 5.)

Рис. 5.

К числу 3 прибавляли какое-то однозначное число и получили число 10. Мы знаем, что результат сложения можно проверить вычитанием. 10 – 3 = 7. Это значит, что за первой снежинкой скрывается цифра 7.

Итак, 3 + 7 = 10. 10 – это 1 десяток и 0 единиц. Поэтому разряду десятков мы должны отдать 1 десяток. Теперь выполним действие с десятками. 6 + 2 = 8. Теперь прибавляем еще 1 десяток, который мы передали от разряда единиц. 8 + 1 = 9. Поэтому вторая цифра, которая была скрыта, это цифра 9. (Рис. 6.)

Рис. 6.

Сегодня на уроке вы научились выполнять сложение в столбик, получая в сумме круглое число.

Список рекомендованной литературы

1. Александрова Э.И. Математика. 2 класс. М.: Дрофа – 2004.

2. Башмаков М.И., Нефёдова М.Г. Математика. 2 класс. М.: Астрель – 2006.

3. Дорофеев Г.В., Миракова Т.И. Математика. 2 класс. М.: Просвещение – 2012.

Дополнительные веб-ресурсы

1. Учебно-методический портал (Источник).

Сделай дома

1. Решите выражения:

а)  33 + 37     б)  28 + 12     в)  56 + 14

Решите выражения:

Решите выражения:

Page 3

Сначала вспомним, какая фигура называется прямоугольником (Рис. 1).

Рис. 1. Определение прямоугольника

Посмотрите на изображенные фигуры (Рис. 2).

Рис. 2. Фигуры

Нам нужно определить, есть ли среди них прямоугольник.

Для этого нам понадобится угольник. Найдем прямой угол у угольника и приложим его к каждому из углов наших фигур. Приложив угольник ко всем углам первой фигуры, мы видим, что он совпал со всеми углами. Это значит, что фигура под номером 1 – это прямоугольник.

Прикладываем прямой угол угольника к фигуре № 2 и видим, что угол не совпадает с прямым углом. Это значит, что фигура № 2 не прямоугольник.

Прикладываем прямой угол угольника к фигуре № 3. Первый угол прямой. Второй угол фигуры прямой. Третий угол фигуры тоже прямой. И четвертый угол тоже прямой. Третья фигура является прямоугольником.

Фигура № 4. Прикладываем прямой угол угольника, и он совпадает с углом фигуры. Прикладываем его ко второму углу фигуры, и он тоже совпадает. Прикладываем прямой угол угольника к третьему углу. Третий угол тоже совпадает. Четвертый угол тоже совпадает. Это значит, что фигура № 4 является прямоугольником.

Фигура № 5. Прикладываем прямой угол угольника к первому углу. Этот угол не совпадает с прямым углом угольника. Это значит, что фигура № 5 не является прямоугольником.

У нас получается, что прямоугольники – фигуры под номерами 1, 3, 4 (Рис. 4).

Рис. 3. Прямоугольники

Мы установили, что прямые углы есть у фигур 1, 3 и 4.

Угольник – это чертежный инструмент для построения углов. Угольники изготовляют из металла, пластмассы или дерева (Рис. 3).

Рис. 4. Угольник

У фигур 1 и 3 равны стороны, которые лежат напротив друг друга. А у фигуры № 4 равны все стороны. Такие фигуры имеют специальное название.

Четырехугольник, у которого стороны попарно равны, называется прямоугольник.

Прямоугольник, у которого все стороны равны, называется квадратом.

Давайте построим прямоугольник с помощью угольника и линейки.

Для этого сначала поставим на плоскости точку. Затем найдем угол на угольнике и приложим его так, чтобы точка была вершиной угла (Рис. 5).

Рис. 5. Точка – вершина угла

Теперь обводим стороны угла (Рис. 6).

Рис. 6. Стороны угла

То же самое мы делаем со вторым углом прямоугольника (Рис. 7).

Рис. 7. Стороны двух углов

Теперь мы возьмем линейку и с ее помощью отмерим отрезки данной длины. С помощью той же линейки мы начертим четвертую сторону (Рис. 8).

Рис. 8. Чертеж сторон фигуры

У нас получилась геометрическая фигура. Давайте ее назовем. Назовем каждую вершину нашего прямоугольника (Рис. 9).

Рис. 9. Обозначение вершин прямоугольника

Мы построили с помощью линейки и угольника прямоугольник АВСD.

На уроке мы узнали, как отличить прямоугольник от других четырехугольников. Так же мы узнали, как построить прямоугольник на листе бумаге, используя угольник и линейку.

Список литературы

  1. Александрова Э.И. Математика. 2 класс. – М.: Дрофа – 2004.
  2. Башмаков М.И., Нефёдова М.Г. Математика. 2 класс. – М.: Астрель – 2006.
  3. Дорофеев Г.В., Миракова Т.И. Математика. 2 класс. – М.: Просвещение – 2012.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Proshkolu.ru (Источник).
  2. Социальная сеть работников образования Nsportal.ru (Источник). 
  3. Illagodigardarivista.com (Источник). 

Домашнее задание

  • Выберите из предложенных фигур прямоугольники (Рис. 10):

Рис. 10. Рисунок к заданию

  • Докажите, что изображенная на рисунке 11 фигура – прямоугольник.

Рис. 11. Рисунок к заданию

  • Самостоятельно постройте прямоугольник со сторонами 5 см и 8 см при помощи угольника и линейки.

interneturok.ru

Виды углов

  • Смежные углы
  • Вертикальные углы

Каждый угол, в зависимости от его величины, имеет своё название:

Вид угла Размер в градусах Пример
Острый Меньше 90°
Прямой Равен 90°.

На чертеже прямой угол, обычно обозначают символом , проведённым от одной стороны угла до другой.

Тупой Больше 90°, но меньше 180°
Развёрнутый Равен 180°

Развёрнутый угол равен сумме двух прямых углов, а прямой угол составляет половину развёрнутого угла.

Выпуклый Больше 180°, но меньше 360°
Полный Равен 360°

Два угла называются смежными, если у них одна сторона общая, а две другие стороны составляют прямую линию:

Углы MOP и PON смежные, так как луч OP – общая сторона, а две другие стороны – OM и ON составляют прямую.

Общая сторона смежных углов называется наклонной к прямой, на которой лежат две другие стороны, только в том случае, когда смежные углы не равны между собой. Если смежные углы равны, то их общая сторона будет перпендикуляром.

Сумма смежных углов равна 180°.

Два угла называются вертикальными, если стороны одного угла дополняют до прямых линий стороны другого угла:

Углы 1 и 3, а также углы 2 и 4 – вертикальные.

Вертикальные углы равны.

Докажем, что вертикальные углы равны:

Сумма ∠1 и ∠2 составляет развёрнутый угол. И сумма ∠3 и ∠2 составляет развёрнутый угол. Значит, эти две суммы равны:

∠1 + ∠2 = ∠3 + ∠2.

В этом равенстве слева и справа есть по одинаковому слагаемому – ∠2. Равенство не нарушится, если это слагаемое в левой и в правой части опустить. Тогда мы получаем:

∠1 = ∠3.

naobumium.info

Как найти прямой угол 90 градусов

Многие строители сталкиваются с такой проблемой — как найти угол 90 градусов с помощью строительной рулетки и карандаша?

Давайте рассмотрим как на практике любой желающий в течение нескольких минут может с помощью строительной рулетки и карандаша сделать точный угольник с прямым углом, то есть 90°.

Технология получения треугольника с прямым углом

Прямой угол

1. Для начала определимся с системой исчесления, к примеру будем считать в «см».

2. Придумываем любое число, например 20.

Примечание: Здесь может быть любое число на ваше усмотрение. Чем больше число, тем больше размер самого треугольника.

3. Берем комбинацию чисел «3, 4, 5» и последовательно умножаем каждое из этих чисел на придуманное нами число 20.

4. Получаются следующие числа: 60, 80, 100.

5. Присваиваем их поочередно к сторонам треугольника:

  • Первый кактет 60 см
  • Второй кактет 80 см
  • Гипотенуза 100 см.

6. Пользуемся.

Как сделать самому угольник с прямым углом за 5 минут?

1. Соединяем между собой две ровные деревянные рейки, так чтобы одна из них была перпендикулярна другой.

2. Измеряем два катета по выше изложенной системе.

3. Прибиваем деревянную рейку к первой метке.

4. Измеряем гипотенузу и фиксируем на втором катете.

5. Проверяем все размеры и во всех местах дополнительно фиксируем.

6. Лишние части отрезаем.

konstrukcia-krysh.ru

Прямой, тупой, острый и развернутый угол

Давайте начнем с определения того, что такое угол. Во-первых, он является геометрической фигурой. Во-вторых, он образован двумя лучами, которые называются сторонами угла. В-третьих, последние выходят из одной точки, которую называют вершиной угла. Исходя из этих признаков, мы можем составить определение: угол - геометрическая фигура, которая состоит из двух лучей (сторон), выходящих из одной точки (вершины).

Их классифицируют по градусной величине, по расположению относительно друг друга и относительно окружности. Начнем с видов углов по их величине.

Существует несколько их разновидностей. Рассмотрим подробнее каждый вид.

Основных типов углов всего четыре - прямой, тупой, острый и развернутый угол.

Прямой

Он выглядит так:

Его градусная мера всегда составляет 90о, иначе говоря, прямой угол - это угол 90 градусов. Только они есть у таких четырехугольников, как квадрат и прямоугольник.

Тупой

Он имеет такой вид:

Градусная мера тупого угла всегда больше 90о, но меньше 180о. Он может встречаться в таких четырехугольниках, как ромб, произвольный параллелограмм, во многоугольниках.

Острый

Он выглядит так:

Градусная мера острого угла всегда меньше 90о. Он встречается во всех четырехугольниках, кроме квадрата и произвольного параллелограмма.

Развернутый

Развернутый угол имеет такой вид:

В многоугольниках он не встречается, но не менее важен, чем все остальные. Развернутый угол - это геометрическая фигура, градусная мера которой всегда равняется 180º. На нем можно построить смежные углы, проведя из его вершины один или несколько лучей в любых направлениях.

Есть еще несколько второстепенных видов углов. Их не изучают в школах, но знать хотя бы об их существовании необходимо. Второстепенных видов углов всего пять:

1. Нулевой

Он выглядит так:

Само название угла уже говорит о его величине. Его внутренняя область равняется 0о, а стороны лежат друг на друге так, как показано на рисунке.

2. Косой

Косым может быть и прямой, и тупой, и острый, и развернутый угол. Главное его условие - он не должен равняться 0о, 90о, 180о, 270о.

3. Выпуклый

Выпуклыми являются нулевой, прямой, тупой, острый и развернутый углы. Как вы уже поняли, градусная мера выпуклого угла - от 0о до 180о.

4. Невыпуклый

Невыпуклыми являются углы с градусной мерой от 181о до 359о включительно.

5. Полный

Полным является угол с градусной мерой 360о.

Это все типы углов по их величине. Теперь рассмотрим их виды по расположению на плоскости относительно друг друга.

1. Дополнительные

Это два острых угла, образовывающие один прямой, т.е. их сумма 90о.

2. Смежные

Смежные углы образуются, если через развернутый, точнее, через его вершину, провести луч в любом направлении. Их сумма равна 180о.

3. Вертикальные

Вертикальные углы образуются при пересечении двух прямых. Их градусные меры равны.

Теперь перейдем к видам углов, расположенным относительно окружности. Их всего два: центральный и вписанный.

1. Центральный

Центральным является угол с вершиной в центре окружности. Его градусная мера равна градусной мере меньшей дуги, стянутой сторонами.

2. Вписанный

Вписанным называется угол, вершина которого лежит на окружности, и стороны которого ее пересекают. Его градусная мера равна половине дуги, на которую он опирается.

Это все, что касается углов. Теперь вы знаете, что помимо наиболее известных - острого, тупого, прямого и развернутого - в геометрии существует много других их видов.

fb.ru

Прямой угол

Чему равен прямой угол? Как изобразить прямой угол? Как найти  прямые углы на рисунке?

Прямой угол — это угол, градусная мера которого равна 90º.

I. Проще всего изобразить прямой угол по клеточкам.

1) Точку — вершину прямого угла — ставим на пересечении клеточек.

2) Из вершины проводим лучи — стороны угла: один — горизонтально, другой — вертикально.

3) Ставим знак прямого угла — маленький квадрат при вершине: □

∠ABC=90º,

то есть угол ABC — прямой.

II. Другой способ построения прямого угла — при помощи транспортира:

1) Отмечаем точку — вершину угла.

2) От вершины проводим луч — сторону угла.

3) Совмещаем вершину угла с отметкой в центре транспортира (у разных моделей положение отметки может быть различным) так, чтобы отметка 0º располагалась на стороне угла.

4) На отметке 90 градусов ставим точку.

5) От вершины через эту точку проводим второй луч — другую сторону угла:

III. Ещё один способ построения прямого угла — с помощью угольника.

1) Отмечаем точку — вершину угла.

1) От вершины угла проводим луч — первую сторону угла.

2) Прикладываем угольник прямым углом к вершине угла так, чтобы одна сторона угольника проходила через первую сторону угла.

3) Вдоль другой стороны угольника проводим другой луч — вторую сторону угла.

Чтобы по рисунку найти прямой угол, также можно использовать угольник.

Если приложить угольник к вершине угла вдоль одной из сторон, то  в остром угле вторую сторону угольник частично закроет (так как градусная мера острого угла меньше 90º), в тупом — вторая сторона окажется за угольником (поскольку тупой угол больше 90º), и только в прямом угле другая сторона угольника пройдёт ровно вдоль второй  стороны:

Треугольник, один из углов которого — прямой, называется прямоугольным.

www.treugolniki.ru

Классификация углов

Развёрнутый угол это прямая линия. Такой угол равен 180 ° На рисунке угол ABC является развёрнутым углом

Прямой угол равен половине развёрнутого угла. Он равен 90 ° На рисунке угол DEF это прямой угол.

Острый угол меньше, чем прямой угол. Величина такого угла меньше 90 ° На рисунке угол LMN является острым углом.

Тупой угол больше чем прямой угол, но меньше, чем развёрнутый, то есть величина тупого угла больше, чем 90 ° и меньше чем 180°. На рисунке угол XYZ является тупым углом.

Смежными углами называются углы, такие как a и d, или a и b или b и c или c и d Сумма смежных углов равна развёрнутому углу(180°), поэтому a = c и b = d.

Вертикальные углы это a и c или b и d. Вертикальные углы, образующие пару, равны т.e. a = c и b = d

Пусть две параллельные прямые пересекаются секущей. Углы m и q или n иr или o и s или p иt называются соответствующими. Они имеют равную величину.

www.math10.com


Смотрите также