Каталог
Блок питания для люминесцентных ламп
Почему светодиодные лампы моргают, когда отключены
Мерцание или тусклое свечение в выключенном состоянии - довольно популярная проблема у покупателей светодиодных ламп. Давайте рассмотрим самые распространенные причины и варианты их решения.
1. Установлены выключатели с подсветкой.
Такие выключатели широко распростронены и устанавливаются почти в каждой квартире. Но с удешевлением сначала энергосберегающих люминесцентных ламп со встроенным ЭПРА, а затем и светодиодных ламп покупатели столкнулись с проблемой, что и те и другие могут мерцать или тускло светятся в выключенном состоянии.
Подсветка чаще всего подключена параллельно контактам выключателя. В этом случае, когда выключатель выключен, подсветка подключена последовательно со светильником, когда включен — она шунтируется. Питание осуществляется по цепи:
Фаза – подсветка – лампа в светильнике – ноль

Но схема люминесцентных и светодиодных ламп не такая простая как в приведенном выше примере. Для их работы нужен специальный источник питания: для люминесцентных — ЭПРА или электронная пускорегулирующая аппаратура, а для светодиодных — драйвер (блок питания со стабилизированным постоянным током на выходе). Он может быть импульсным или линейным

Когда такую лампу устанавливают в светильник, через неё начинает протекать ток подсветки, тем самым заряжая конденсатор на входе драйвера. Он заряжается до величины достаточной для питания светодиодов, но недостаточной для их длительной работы, в результате лампы тускло светятся или кратковременно моргают.
При этом не имеет значения, какой тип подсветки стоит в выключателе – неоновая лампочка или светодиод. Есть несколько способов решения данной проблемы.
Способ 1 — избавится от подсветки
Установить выключатель без подсветки или демонтировать ее. Быстрый и эффективный способ, но главный недостаток – отсутствие подсветки.

Способ 2 — установить хотя бы 1 лампу накаливания
Если в светильнике установлено несколько ламп или от одного выключателя включается несколько светильников, то можно установить в светильник 1 лампу накаливания с похожим световым потоком.
Лампа накаливания будет выполнять роль резистора и светодиодные лампы не будут мерцать в выключенном состояние. При таком способе решения задачи одна из ламп будет отличаться по яркости и цветовой температуре.
Способ 3 — шунтирующий резистор или конденсатор
Это Подключение резистора или конденсатора параллельно светодиодной лампе — наиболее предпочтительное решение этой проблемы. Их можно установить в распределительной коробки, на клеммнике светильника или непосредственно на клеммах самого патрона.
Для этого нужен резистор мощностью не меньше 2 ватт сопротивлением в диапазоне 51-510 кОм. Точное сопротивление вы можете подобрать, если измерите ток подсветки с вкрученной лампой накаливания, либо же подобрать опытным путем — постепенным увеличением/уменьшением сопротивления, чтобы при этом подсветка достаточно ярко светилась и резистор не слишком сильно грелся.
Но здесь есть такой же недостаток, что и в предыдущем случае. Резистор греется, а значит, он бесполезно тратит электроэнергию. Например, на резисторе сопротивлением в 51 кОм будет постоянно выделяться 1 ватт мощности в виде тепла, что вроде бы и немного, но если у вас вкручены светодиодные лампы мощностью около 5 ватт, это уже 20% к их потреблению.
Но резистор — это активное сопротивление, а в электротехнике есть еще и реактивное. В роли реактивного сопротивления используют конденсатор. Таким же образом, параллельно лампочке устанавливаем неполярный плёночный конденсатор ёмкостью в диапазоне от 0.1 до 1 мкФ с номинальным напряжением в 630 вольт (можно не ниже 400В), внешне они напоминают подушечки коричневого цвета, как показано на фотографии ниже.
Напомним, что в цепях постоянного тока после заряда конденсатор не пропускает ток, но в цепи переменного тока он пропускает ток, и как резистор оказывает сопротивление его протеканию.
В продаже можно найти и готовые решения, такие как Гранит-Б3-300-Л. Это блок защиты и устранения мерцания светодиодных и энергосберегающих ламп. Подключается он также как описано выше — параллельно светильникам. Внутри такого блока установлена печатная плата с резистором, варистором и конденсатором, а принцип действия такого блока ничем не отличается от установки резистора или конденсатора параллельно лампе. Отличие состоит лишь в том, что варистор должен защитить светодиодные источники света от импульсных перенапряжений в электросети, тем самым продлив им жизнь, так что, выбор за вами!

Способ 4 — отдельное питание для подсветки
И последний, не всегда удобный вариант – к выключателю провести отдельный ноль и запитать подсветку от него. В этом случае нужно будет либо переделать подключение подсветки самостоятельно, либо купить выключатель, в котором изначально предусмотрена клемма для подключения нулевого провода к подсветке, такие есть, например, у компании Legrand, ниже вы видите схему из каталога механизмов серии Cariva.

Другие возможные проблемы
В заключение статьи отметим, что мерцать светодиодные лампы могут и по другим причинам, например, если выключатель рвёт нулевой, а не фазный провод. Тогда лампа постоянно будет подключена к фазе, и, если проводка старая, то могут быть утечки, из-за которых и будет возникать мерцание. Если линия длинная, то провода представляют собой некий аналог антенны, и расположенные рядом провода наводят в ней ток, из-за этого тоже может возникать мерцание.
Однако, стоит отметить, что в настоящее время производители борются с типовыми проблемами при использовании светодиодного освещения, в том числе и рассмотренной в этой статье проблемой. Решить её можно, если установить в драйвер конденсатор параллельно его входу. Именно поэтому лампы от известных производителей, например, Philips, зачастую нормально работают с выключателями с подсветкой.
shop.feron.ru
Лабораторный блок питания своими руками
Подача напряжения питания для различной электронной аппаратуры может осуществляться не только от заводских устройств. Блок питания (БП) своими руками можно сделать и в домашних условиях. В том случае, когда такой аппарат нужен для постоянной работы с различными напряжениями при регулировке: усилителей, генераторов и других самодельных схем, желательно, чтобы он был лабораторным.
Схемы блоков питания
Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:
- однополярный;
- двуполярный;
- лабораторный импульсный.
Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).
Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична.
Простой лабораторный
Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:
- понижающий трансформатор Tr ( 220/12…30 В);
- диодный мост Dr для выпрямления пониженного переменного напряжения;
- электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
- потенциометр для регулировки выходного напряжения Р1 5 кОм;
- сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
- два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
- для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.
В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.
К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.
Печатная плата простого БПДвухполярный источник питания
Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.
Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения.
Двухполярный ИП на транзисторахДля такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.
Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.
Внимание! Установленные светодиоды гаснут при срабатывании защиты по току, если он превышает значение 3 А.
Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).
Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.
Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.
Лабораторный импульсный бп
Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.
Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.
Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.
Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.
Схема импульсного блока питанияДанный источник питания собран на микросхеме TL494.
Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности.
Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.
Особенности сборки схемы:
- для минимизации потерь при выпрямлении используют диоды Шоттки;
- ESR электролитов в фильтрах на выходе должен быть как можно ниже;
- дроссель L6 от старых БП применяют без изменения обмоток;
- дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
- Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
- для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.
Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.
Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится.
Изготовление печатной платы и сборка
Блок питания для шуруповерта 12в своими рукамиСхема подразумевает изготовление трёх печатных плат. Платы подбираются для корпуса Kradex Z4A.
Расположение плат в корпусе Kradex Z4AПлаты выполнены из фольгированного гетинакса путем фотопечати и протравки дорожек.
Настройка блока питания
Паяльная станция своими рукамиПравильно собранное устройство не нуждается в особой регулировке. Необходимо лишь подстроить диапазоны регулировки тока и напряжения.
Четыре операционных усилителя в микросхеме LM324 осуществляют регулировку тока и напряжения. Микросхема питается через фильтр, собранный на L1, C1 и С2.
Чтобы настроить схему регулировки, нужно подобрать элементы, помеченные звёздочкой, для маркировки регулирующих диапазонов.
Индикация
Блок питания из энергосберегающих лампДля индикации обычно используются устройства индикации и модуль измерения на микроконтроллерах. Питание таких контроллеров лежит в пределах 3-5 В.
Рекомендации по улучшению надежности
Лабораторный бп должен простоять под нагрузкой не менее 2 часов. После этого проверяют температуру корпусов трансформаторов, работу теплоотводов. При намотке трансформаторов для снижения шума при работе намотку обмоток осуществляют плотно виток к витку. Готовую конструкцию заливают парафином. При установке элементов на радиаторы места контактов промазывают теплопроводящей пастой.
В корпусе просверливают ряд отверстий, напротив теплоотводов, сверху дополнительно устанавливают кулер.
Защита блока питания
Токовая стабилизация (защита) микросхемы LM324 срабатывает при превышении установленного токового порога. В этом случае на микросхему приходит сигнал о понижении напряжения. Красный светодиод служит индикатором повышения напряжения или возникновения короткого замыкания. В рабочем режиме светится зеленый светодиод.
Советы по оформлению корпуса
Корпус Kradex Z4A позволяет выводить элементы управления и индикации, как на лицевую, так и на боковые панели. Ручки регулировки, индикатор лучше всего устанавливать на лицевую панель. Разъем для выходного напряжения можно крепить где угодно.
Внешний вид самодельного ИБПСобранный своими руками лабораторный блок питания с использованием мощных полевых транзисторов и импульсных трансформаторов незаменим для работы. В качестве индикаторов желательно использовать цифровые электронные ампервольтметры.
Видео
amperof.ru
Ультрафиолетовая лампа для ногтей SUN X5 Max. Мужской обзор.
- AliExpress
- Красота и здоровье
- Фонарики и светодиодные лампы

Диод
Фото не мое, добавлено из чужого обзора, так как с макро фото моя камера справляется ровно никак.
Упаковка и инструкция



Внешний вид
Лампа состоит из двух частей, которые крепятся друг к другу на магнитах. Нижняя часть снимается для того, чтобы можно было использовать ее для ног.


Немного о режимах работы
Если просто засунуть руку, ничего не нажимая, лампа включается, и начинается отсчет со 120 секунд. При вытаскивании руки лампа тут же гаснет. Если нажать на какую-то кнопку из этих: 10s, 30s, 60s, 99s, лампа включается на выбранное количество времени, и не гаснет, пока таймер не закончит отсчет или не будет снова нажата кнопка. Для этого даже не надо засовывать руку. Это здорово, потому что если оптический датчик накроется, лампу все равно можно будет включить. Пустячок, а приятно. После того, как отсчет закончится, лампа гаснет, и дальше при засовывании руки внутрь, лампа будет автоматически включаться на выбранное ранее время, а не на 120 секунд по умолчанию. Про режим 99 секунд — это режим со сниженной мощностью. Вроде бы, может быть полезен для каких-то гелей, которые сильно нагреваются при отверждении: для того, чтобы не корчиться под лампой в муках с дымящимися ногтевыми пластинами :). Я измерил, мощность уменьшается в три раза, измерения будут далее.Сравнение со старой лампой
Сравнение габаритов


Тесты на лаках
В качестве испытуемых у нас будут оригинальные основа и топ Gelish, заказанные на Ebay из США, а так же три китайских лака Rosalind. Я выбрал самый светлый, средний, и самый темный, вдруг будет какая-то разница.

Разборка
Откручиваем пять винтов, открываем. На вид все совсем неплохо, светодиоды расположены на алюминиевых теплоотводах.

Замеры реальной мощности
Для начала измерим напряжение на блоке питания. 12.14 вольт. Тут все хорошо.
Измеряем температуру
Я взял самый горячий модуль, и подключил к нему термопару, поскольку ИК термометр жена прихватила с собой. Только хардкор! Пожирнее намазываем термопасты, и прицепляем термопару клипсой.





Сравнение с УФ фонарем на диоде Nichia
Взглянем на диод через фильтр Вуда. Хм, как будто слабовато. Но заявленные 365 нм явно имеются.
Впечатления и выводы
Конечно, лампа не имеет заявленных 80 ватт, как и любая другая подобная светодиодная сушилка для ногтей. Но спорить по этому поводу с продавцом я конечно же, не буду. Черт побери, менее чем за тысячу рублей я купил жене отличную, и довольно надежную, как мне кажется, лампу для ногтей, которая замечательно справляется со своей работой. Да еще ее и привезли курьером СДЭК за 4 дня. Никаких пунктов 18, все строго на кровно заработанные.
Фото через фильтр Вуда*
*Фильтр Вуда пропускает только ультрафиолет, задерживая видимый свет

mysku.ru
Укрощение огня, дубль 2. Доработка светодиодной лампы Т10

Под катом — разбор, доработка напильником и паяльником, много замеров и увеличить цоколь без SMS.
Посылка добралась из Китая за 17 дней.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Планирую купить +10 Добавить в избранное Обзор понравился +57 +85mysku.ru
Схема люминесцентного светильника с одной лампой. Как своими руками сделать люминесцентный светильник
Люминесцентная лампа - это запаянная трубка, внутри которой находятся пары газа, которые под воздействием электрического разряда (пробоя) переходят в возбуждённое состояние и бомбардируют слой люминофора, нанесённый изнутри на колбу лампы. Эта бомбардировка и вызывает свечение. Для того чтобы «пробить» разрядом газовую среду, которая плохо проводит электричество, необходим первичный импульс – сильный первоначальный ток. После включения, необходимо поддерживать внутри колбы «тлеющий разряд», который позволит обеспечить свечение слоя люминофора даже при кратковременном отключении питания. Отсюда – как сложности, так и преимущества подключения люминесцентных ламп, физика которых основана не на прямом накале светящейся нити.
Что горит в люминесцентной лампе?
На самом деле много чего. Спираль, которая является источником возбуждённых электронов. Газ, ионизация которого заставляет светиться слой люминофора, сам газ внутри колбы (свечения которого мы не видим) и стартёр, имеющий световую индикацию исправности.
Давайте теперь посмотрим, что такое схема люминесцентной лампы:
Для человека, знакомого с кабалой электрических схем всё очевидно. Диодный мост исключает пробой на L4 и С1, R1-2 демпфируют импульсные токи на контуре EN, а дополнительный диод позволяет конденсатору схватывать излишки токов.
Это схема полностью объясняет, как подключить люминесцентную лампу, и, кстати, как экономить электроэнергию. Обратите внимание, исключив Z и D7, мы получим существенное снижение пускового тока, что позволит экономить на электроэнергии!
Не понятно? Хорошо. Давайте немного упростим задачу
Для бытовых целей этого достаточно. Но подключение люминесцентных ламп имеет особенность. Стоит иметь в виду, что эта картинка подключения одной лампы. Если подключаем своими руками несколько ламп, то нужно принять во внимание, что последовательное подключение проще, надежнее и боле экономно в смысле затрат энергии. Это напрямую связано с заголовком этой части статьи – что светит. Импульс стартёра , передаваемый последовательно, позволяет упростить пуск каждой следующей лампы. Иначе говоря, заряд расходуемый на пуск первой лампы передается дальше , снижая затраты на пуск второй и так далее.
А горит в лампе люминофор , который после установления в колбе необходимых условий «тлеет» с очень небольшим потреблением электричества. Отсюда и энергосберегающие свойства этих ламп, и всех производных – вроде компактных, которые, по сути, остались люминесцентными.
Варианты подключения люминесцентных ламп
Строго говоря, вариантов как выбрать, установить и подключить люминесцентную лампу немного. Эти параметры задаёт схема люминесцентной лампы, а также компоновка осветительного прибора. Обратите внимание – мы в этой статье не рассматриваем характеристики , нас больше интересует вопрос, как подключить люминесцентную лампу правильно. Исходя из этой задачи, мы имеем в виду что:
- Нагрузка на электропроводку должна быть минимальна;
- Условия эксплуатации требуют именно такой лампы (об этом ниже);
- Параметры сети стабильны (плавная регулировка диммерами невозможна, а перепады напряжения это постоянная замена сгоревших люминесцентных ламп);
- Требования к освещению помещения не позволяют использовать лампы накаливания, или это прямая экономия на электроэнергии;
- Каждая лампа это отдельный прибор, снабженный демпфирующим дросселем, балластом и стартёром, причём использовать даже в промышленных масштабах мощных дроссель на 10-ть ламп невозможно.
Из этого вытекает, что каждая люминесцентная лампа, применяемая нами в быту, должна точно занимать своё место. Причём в отличие от иных , это место которое снабжено:
- Специальным цоколем (за исключением адаптированных к винтовым цоколям энергосберегающих ламп);
- Специальным «глушителем» света (абажуром). Как правило, матовым стеклом, которое позволяет убрать эффект «мерцания»;
- Доступом. Когда замена люминесцентных ламп и элементов прибора (обычно стартёров) делается быстро, без особых трудозатрат.
Сам процесс подключения должен выглядеть таким образом. Мы берём фазу, на которую вешаем контакт лампы. Нейтральный провод присоединяем к дросселю, от которого замыкаем второй контакт в лампе. При подаче напряжения лампа будет «моргать», примерно раза три-четыре в минуту. Это значит, что ток пробоя достаточен.
Для плавного пуска лампы нужен стартёр, он же балласт, он же ключевой элемент Пусковой Регулирующей Аппаратуры (ПРА). Сегодня более применимы Электронные ПРА, ЭПРА. Главная задача балласта – балансировать нагрузку. Иначе говоря, не позволять дросселю «плеваться зарядом», что приводит к вспышкам, а не спокойному горению лампы. Ещё раз посмотрите на схему:
Балласт висит над контактами лампы, балансируя разряды внутри колбы. Название не случайно, стартёр не только запускает непрерывный разряд внутри лампы, но и не позволяет этому разряду выйти за рамки внутри колбы. Случаев взрыва люминесцентных ламп практически нет, но «чёрная трубка» это скорее правило, а не исключение. Тот самый случай, когда люминофор выгорел из-за переразряда. Обычно так происходит, когда стартёр выходит из строя после того, как лампа зажглась.
Подключение люминесцентных ламп делаем последовательно, следя за тем, чтобы и дроссель и стартёр работали каждый на свою лампу. При подключении готового светильника (в котором много ламп) убедимся в том, что стартёров столько, сколько ламп, иначе выход из строя одного стартёра может выключить весь осветительный прибор.
Мы понимаем, что этот тип освещения, не боится влаги, перепадов температур и безопасен как источник пожара (кроме ), поэтому в аквариумах другие лампы не используют , а там влажность в зоне светильника почти 100%.
Ещё мы помним, что ЛЛ – это источник яда и заражения . Поэтому не будем их устанавливать там, где они могут быть физически разрушены. Что ещё осталось узнать про люминесцентные лампы, о чём предпочитают не писать в сети?
Некоторые особенности ламп дневного света
Начнём со «смерти» такой лампы, которая потребует особого подхода к «похоронам». Наберите в поиске « демеркуризация утилизация ртуть мой город ». Найдите ближайшую точку, которая оказывает такую услугу. Таких точек много, одна-две обязательно окажутся неподалёку. Именно туда нужно сдать перегоревшую ЛЛ, а не выкидывать её в мусорный контейнер. Туда же нужно сдавать энергосберегающие лампы, ртутные, перегоревшие светодиоды и батарейки. Если конечно Вы, человек, который неравнодушен к приятности прогулок около своего дома.
Это один из недостатков, который вызывает замена люминесцентных ламп, но не самый сложный. Куда сложнее ситуация, когда после многолетней эксплуатации «прикипела» пятка лампы к цоколю. Да, ЛЛ служат много лет, и часто случается так, что цоколь просто обрастает отложениями (конденсат, пыль и т.д.), что не позволяет вынуть лампу, не разрушив колбу. Наша рекомендация – пригласите специалистов. Вы должны понимать, что внутри колбы пары ртути и других газов, которые тяжелее воздуха и от которых проветриванием не избавится.
Перепад напряжения выведет из строя примерно 30% ЛЛ. Это нужно иметь в виду, занимаясь обустройством освещения на даче, где падения напряжения не исключения, а скорее правило. Оставшиеся 70% ламп не выйдут из строя. Они просто станут работать с меньшим КПД.
Если подключить ЛЛ в сеть, не соблюдая принцип «фаза – нейтральный провод», то каждая вторая лампа будет мерцать. Даже при последовательном соединении. Это потому, что схема люминесцентной лампы содержит конденсатор, который будет сбрасывать избыток заряда при неверном присоединении балансов.
Даже при соблюдении любых схем подключения люминесцентных ламп, они всё равно будут мерцать и «моргать». Это не потому, что мы плохо разобрались в том, как всё сделать правильно. Это физика электрического пробоя, который не может быть постоянным. Он «искрит», поэтому искрит и лампа. Чем меньше работает балласт (конденсатор), тем лучше он держит уровень «пробоя», и тем меньше мерцание лампы.
Лампа стала заметно мигать? Сначала поставьте на её место другую лампу, которая не мигает. Проверьте напряжение в сети, если всё в порядке - замените стартёр. Если мигание не исчезло – замените ЭПРА целиком.
И не забывайте время от времени вынимать лампу и нулевой шкуркой чистить контакты, это ахиллесова пята этих ламп – окисление контактов, что значительно влияет на её работоспособность.
В заключение хотелось бы отметить, что при всех своих недостатках, ЛЛ имеют множество преимуществ, от длительности сроков эксплуатации и правильного спектра, до безопасности и минимальной нагрузки на электропроводку квартиры. Поэтому, несмотря на завоевание рынка освещения , пока рановато списывать люминесцентные лампы в утиль. Полезнее научится использовать их грамотно и уместно.
Сегодня наблюдается тенденция к самостоятельному изготовлению для дома различных девайсов, в том числе и осветительных приборов. Это позволяет дать вторую жизнь старым бытовым вещам, а также хорошо сэкономить на покупке новых светильников. Сегодня речь пойдет об изготовлении своими руками люминесцентного светильника.
Сделать такой осветительный прибор или провести ремонт вышедшей из строя лампы сможет любой человек, обладая даже минимальными представлениями об основах электротехники. В этом вам поможет наша статья.
Немного о лампе
Источник света
Люминесцентный светильник представляет собой изделие, в котором в качестве источника света выступает люминесцентная лампа. Принцип действия такого источника света базируется на передаче напряжения с помощью паров ртути. Под влиянием электрозаряда это вещество дает яркое свечение, благодаря чему светильник имеет отменную светоотдачу.
Обратите внимание! Такие лампы выпускаются производителями с различным спектром свечения. Это позволяет устанавливать освещение максимально комфортного спектра.
Такой светильник считается одним из наиболее распространенных моделей в офисных, муниципальных и общественных учреждениях. Но кроме этого он также достаточно широко применяется в частных домах и квартирах. Популярность люминесцентный источник света приобрел благодаря экономичности и яркому свечению. При этом принцип организации осветительного прибора достаточно прост. Поэтому многие сегодня проводят ремонт и его сборку своими руками.
Что нужно знать
Для всех светильников, в состав которых входит люминесцентный источник света, характерна цилиндрическая и прямоугольная формы. Они узкие и имеют маленький вес, поэтому их можно установить в различные места в доме.
Обратите внимание! Такие светильники могут подключаться как к электросети (220 (230) В), так и работать от аккумулятора. Последние модели очень актуальны для загородных домов, гаражей и складских помещений.
Кроме этого данный тип светильников может быть разных модификаций:
- стационарные. В эту группу входят встраиваемые, накладные и потолочные светильники;
- мобильные или переносные. Сюда причисляются подвесные осветительные приборы, которые могут переноситься с одного места на другое или просто ставиться на пол, стол или полку.
Варианты ламп
Сделать оба варианта своими руками достаточно просто. Если немного разобраться в устройстве и знать, как все делать, то даже ремонт подобного светильника не станет для вас большой сложностью. И наша статья постарается вам в этом помочь.
Как и из чего делать
Чаще всего люминесцентные светильники своими руками делают для подсветки аквариумов. Поэтому рассмотрим процесс сборки на этом примере. Для работы таких светильников необходима довольно-таки громоздкая система электроники. Но ее можно заменить на бездроссельную схему, которая займет значительно меньше места. Но она будет менее надежной, чем первый вариант и в скором времени может понадобиться ремонт прибора.
Итак, первое правило сборки — такой аквариумный светильник необходимо сделать так, чтобы он полностью закрывал верхнюю часть аквариума.
Примерный вид
Чтобы сделать люминесцентный осветительный прибор для аквариума своими руками вам понадобится:
- оргстекло;
- люминесцентные лампы;
- клей;
- герметик;
- изоляционная лента;
- провод с таймером и вилкой;
- пластик для каркаса.
Приступаем к работе
Сделать такой осветительный прибор своими руками вы можете любой конструкции. Но лучше выбрать вариант со съемной верхней крышкой, чем отдать предпочтение монолитной конструкции. Так, в случае всего, проводить ремонт будет удобнее. Здесь процесс изготовления предполагает проведение следующих действий:
- делаем по периметру рамку. Ее лучше изготовить двухслойной. Верхний слой будет носить декоративный характер;
- сбираем электросистему лампы по схеме;
Схема сборки
- убедитесь в том, что все контакты надежно изолированы. В ситуации с близким расположением воды это жизненно важно. Для этого на концы ламп следует надеть герметичные наконечники;
Обратите внимание! Герметичные наконечники можно сделать из подручных средств.
- прикрепляем всю электросхему к пластиковой крышке светильника;
- далее с помощью клея фиксируем на нижней стороне прибора прямоугольник из оргстекла;
- сверху надеваем пластиковую крышку, на которой установлены люминесцентные лампы. Крышка должна легко сниматься, чтобы можно было провести ремонт прибора.
Почти готовое изделие
Если крышка имеет черный цвет, то ее необходимо оклеить белой светоотражающей пленкой. Для белого пластика такие манипуляции не проводятся. В местах состыковки светильника с аквариумом необходимо пройтись герметиком, чтобы предотвратить проникновение внутрь осветительного прибора конденсата. Но перед нанесением герметика не забудьте обезжирить стекло.
Второй вариант
Во втором случае мы воспользуемся основой для светильника из ЭПРА (электронный пускорегулирующий аппарат). Такое изделие, выполненное своими руками, отлично подойдет для технических или подсобных помещений. В этой ситуации вам понадобятся:
- корпус. Его можно сделать из подручных материалов (только не берите легко воспламеняемые изделия);
- электронный дроссель или ЭПРА. Лучше использовать второй вариант;
- патроны G13. Они берутся из расчета два патрона на одну лампу;
- медные многожильные провода с сечением 0,2-0,5 кв.мм. Подходят и гибкие (многопроволочные) с залудившими концами;
- винтики и гаечки для установки всех деталей на корпусе.
Делаем светильник следующим образом:
- устанавливаем патроны на требуемом расстоянии друг от друга;
- прикрепляем ЭПРА. Поскольку данный элемент будет нагреваться в процессе работы, то его располагаем таким образом, чтобы на него воздействовало минимум стороннего подогрева;
- соединяем проводами патроны с ЭПРА по схеме;
Схема подключения
- для подключения патрона необходимо снять с его провода изоляцию. Снимать необходимо примерно на 1 см;
- после этого свободный от изоляции провод нужно до упора вставить в отверстие;
Обратите внимание! Согласно специфике выбранного патрона необходимо подбирать провода по сечению. Лучше использовать однопроволочные провода.
- провода в патроны нужно просто вставить, а зажимаются они удерживателями пластинчатой пружины внутри;
- хорошо изолируем все контакты между проводами;
- помещаем все элементы внутрь корпуса и накрываем сверху защитной крышкой. Несмотря на тот факт, что для ламп с низким давлением это не является обязательной процедурой, защита прибора и его содержимого все же нужна. В противном случае возможно повреждение ламп от механических ударов и выход наружу паров ртути, которые очень ядовиты для человеческого организма;
- для лучшей герметизации по всей длине корпуса можно пройтись дополнительно герметиком. Но это в будущем усложнит процесс ремонта и замены вышедших из строя деталей лампы.
Готовый прибор
Подключение такого осветительного прибора будет идти к электросети на 220В. Подобная конструкция позволяет разместить светильники на стене или потолке. Вместе с тем, ремонт для таких изделий будет несколько затруднен из-за способа крепления прибора.Как показывает практика, собранные своими руками по такой схеме люминесцентные светильники работают хорошо и долго. Но для этого необходимо, чтобы температура окружающей среды была в диапазоне от -10 до +30°C.
Подводя итог, можно заключить, что процесс самостоятельной сборки осветительного прибора люминесцентной модели не так уж сложен. Главное здесь следовать схеме подключения всех компонентов электросхемы и четко выполнять последовательность манипуляций.
Как самому сделать ангельские глазки для ваза?
Благодаря экономичному электропотреблению, безопасности и высокому сроку службы, в настоящее время светодиоды уверенно вытесняют многие традиционные источники света. В частности, на светодиодные аналоги повсеместно стали заменяться люминесцентные лампы типа T8.
Часто требуется не замена всего светильника целиком, а простая установка светодиодных ламп в уже существующие. И чтобы сделать этот процесс максимально простым, производители светодиодных ламп изготавливают их с таким же цоколем (G13), а размеры полностью повторяют размеры люминесцентных ламп (D=26мм L=600 мм / 900мм / 1200мм / 1500мм / 2400 мм). Остается только немного модернизировать электрическую схему и можно устанавливать светодиодные трубки.
Весь ассортимент этой продукции можете посмотреть в разделе светодиодные лампы g13.
Рассмотрим подробнее особенности установки светодиодных трубок (ламп) Т8 в светильники для люминесцентных ламп.
В зависимости от типа светодиодной лампы существует два варианта установки ламп:
- С подключением ламп на AC 220V (подходит для любой исходной ПРА).
- С подключением ламп на AC 110V (подходит только для светильников с ЭмПРА).
Обратите внимание!
- При установке нескольких ламп в один светильник используйте параллельное подключение. Не допускается последовательное подключение, т.к. это приводит к перепадам напряжения и повреждению драйвера лампы.
- Работы по замене должны выполняться квалифицированным персоналом в соответствии с нормами и требованиями безопасности.
1. Подключение ламп на AC 220V : Первый вариант требует непосредственного питания ламп от электросети 50 Гц 220 В. В этом случае нужно предварительно удалить все элементы пускорегулирующей аппаратуры: электронный блок или элементы электромагнитной ПРА (стартер, дроссель и прочее). Потребляемая мощность светильника будет складываться из суммарной мощности светодиодных ламп.
Порядок действий:
- Удалите люминесцентные лампы.
- Удалите старую электронную схему: а) удалите электронный блок ПРА; б) удалите стартеры и извлеките балласт из электрической цепи, отключите конденсатор, если есть.
- Вставьте светодиодные лампы.
- Включите электропитание.
Схема подключения светодиодной лампы прямого включения 220В
После удаления ПРА светильники должны выглядеть примерно как на фото ниже (переделан светильник на две лампы длиной 1200 мм). Для соединения контактов используйте клеммы.
Светильник люминесцентный типо Арктика 2х36 1200мм в разобранном виде с обратной стороны после удаления всех элементов ПРА для подключения светодиодных ламп на 220В.
2. Подключением ламп на AC 110V :
Второй вариант подразумевает, что в схеме остается электромагнитный балласт, удаляется только стартер, такие светодиодные лампы рассчитаны на подачу напряжения 110 В. При таком подключении потребляемая мощность светильника складывается из суммарной мощности светодиодных ламп и мощности, потребляемой оставшейся ПРА. В этом варианте электроэнергии будет потребляться больше, чем в первом, а значит эффект экономии будет меньше. Кроме того, необходимо предварительно точно определить, какой тип ПРА установлен в светильниках.
Порядок действий:
- Обесточьте светильник, чтобы избежать поражения электрическим током.
- Удалите люминесцентные лампы.
- Удалите стартеры, оставьте балласт (или замените стартеры на специальные для светодиодных ламп).
- Вставьте светодиодные лампы
- Включите электропитание.
Поворотный цоколь. На что еще следует обратить внимание:
В светильниках бывают по-разному установлены патроны: горизонтально, вертикально, а иногда и под углом. Поскольку люминесцентные лампы светят на 360°, то для них неважно, как устанавливать лампу в патрон. Но светодиодные лампы имеют направленный световой поток, поэтому следует обращать внимание на расположение прорези под патрон в цоколе лампы, иначе может оказаться, что светодиодная лампа светит не вниз, а вбок. Наиболее универсальным в этом случае оказывается поворотный цоколь: он подходит к любым светильникам.
Цоколи светодиодных ламп: а) не поворотный б) поворотный.
Надеемся, что наша инструкция помогла Вам правильно выбрать и подключить светодиодные лампы, и сейчас Вы в полной мере используете все преимущества современного светодиодного освещения.
Вконтакте
Одноклассники
Google+
les74.ru
Светильники дневного света люминесцентные схема электрическая. Схема люминесцентной лампы и как подключить лампу дневного света
Люминесцентная лампа - это запаянная трубка, внутри которой находятся пары газа, которые под воздействием электрического разряда (пробоя) переходят в возбуждённое состояние и бомбардируют слой люминофора, нанесённый изнутри на колбу лампы. Эта бомбардировка и вызывает свечение. Для того чтобы «пробить» разрядом газовую среду, которая плохо проводит электричество, необходим первичный импульс – сильный первоначальный ток. После включения, необходимо поддерживать внутри колбы «тлеющий разряд», который позволит обеспечить свечение слоя люминофора даже при кратковременном отключении питания. Отсюда – как сложности, так и преимущества подключения люминесцентных ламп, физика которых основана не на прямом накале светящейся нити.
Что горит в люминесцентной лампе?
На самом деле много чего. Спираль, которая является источником возбуждённых электронов. Газ, ионизация которого заставляет светиться слой люминофора, сам газ внутри колбы (свечения которого мы не видим) и стартёр, имеющий световую индикацию исправности.
Давайте теперь посмотрим, что такое схема люминесцентной лампы:
Для человека, знакомого с кабалой электрических схем всё очевидно. Диодный мост исключает пробой на L4 и С1, R1-2 демпфируют импульсные токи на контуре EN, а дополнительный диод позволяет конденсатору схватывать излишки токов.
Это схема полностью объясняет, как подключить люминесцентную лампу, и, кстати, как экономить электроэнергию. Обратите внимание, исключив Z и D7, мы получим существенное снижение пускового тока, что позволит экономить на электроэнергии!
Не понятно? Хорошо. Давайте немного упростим задачу
Для бытовых целей этого достаточно. Но подключение люминесцентных ламп имеет особенность. Стоит иметь в виду, что эта картинка подключения одной лампы. Если подключаем своими руками несколько ламп, то нужно принять во внимание, что последовательное подключение проще, надежнее и боле экономно в смысле затрат энергии. Это напрямую связано с заголовком этой части статьи – что светит. Импульс стартёра , передаваемый последовательно, позволяет упростить пуск каждой следующей лампы. Иначе говоря, заряд расходуемый на пуск первой лампы передается дальше , снижая затраты на пуск второй и так далее.
А горит в лампе люминофор , который после установления в колбе необходимых условий «тлеет» с очень небольшим потреблением электричества. Отсюда и энергосберегающие свойства этих ламп, и всех производных – вроде компактных, которые, по сути, остались люминесцентными.
Варианты подключения люминесцентных ламп
Строго говоря, вариантов как выбрать, установить и подключить люминесцентную лампу немного. Эти параметры задаёт схема люминесцентной лампы, а также компоновка осветительного прибора. Обратите внимание – мы в этой статье не рассматриваем характеристики , нас больше интересует вопрос, как подключить люминесцентную лампу правильно. Исходя из этой задачи, мы имеем в виду что:
- Нагрузка на электропроводку должна быть минимальна;
- Условия эксплуатации требуют именно такой лампы (об этом ниже);
- Параметры сети стабильны (плавная регулировка диммерами невозможна, а перепады напряжения это постоянная замена сгоревших люминесцентных ламп);
- Требования к освещению помещения не позволяют использовать лампы накаливания, или это прямая экономия на электроэнергии;
- Каждая лампа это отдельный прибор, снабженный демпфирующим дросселем, балластом и стартёром, причём использовать даже в промышленных масштабах мощных дроссель на 10-ть ламп невозможно.
Из этого вытекает, что каждая люминесцентная лампа, применяемая нами в быту, должна точно занимать своё место. Причём в отличие от иных , это место которое снабжено:
- Специальным цоколем (за исключением адаптированных к винтовым цоколям энергосберегающих ламп);
- Специальным «глушителем» света (абажуром). Как правило, матовым стеклом, которое позволяет убрать эффект «мерцания»;
- Доступом. Когда замена люминесцентных ламп и элементов прибора (обычно стартёров) делается быстро, без особых трудозатрат.
Сам процесс подключения должен выглядеть таким образом. Мы берём фазу, на которую вешаем контакт лампы. Нейтральный провод присоединяем к дросселю, от которого замыкаем второй контакт в лампе. При подаче напряжения лампа будет «моргать», примерно раза три-четыре в минуту. Это значит, что ток пробоя достаточен.
Для плавного пуска лампы нужен стартёр, он же балласт, он же ключевой элемент Пусковой Регулирующей Аппаратуры (ПРА). Сегодня более применимы Электронные ПРА, ЭПРА. Главная задача балласта – балансировать нагрузку. Иначе говоря, не позволять дросселю «плеваться зарядом», что приводит к вспышкам, а не спокойному горению лампы. Ещё раз посмотрите на схему:
Балласт висит над контактами лампы, балансируя разряды внутри колбы. Название не случайно, стартёр не только запускает непрерывный разряд внутри лампы, но и не позволяет этому разряду выйти за рамки внутри колбы. Случаев взрыва люминесцентных ламп практически нет, но «чёрная трубка» это скорее правило, а не исключение. Тот самый случай, когда люминофор выгорел из-за переразряда. Обычно так происходит, когда стартёр выходит из строя после того, как лампа зажглась.
Подключение люминесцентных ламп делаем последовательно, следя за тем, чтобы и дроссель и стартёр работали каждый на свою лампу. При подключении готового светильника (в котором много ламп) убедимся в том, что стартёров столько, сколько ламп, иначе выход из строя одного стартёра может выключить весь осветительный прибор.
Мы понимаем, что этот тип освещения, не боится влаги, перепадов температур и безопасен как источник пожара (кроме ), поэтому в аквариумах другие лампы не используют , а там влажность в зоне светильника почти 100%.
Ещё мы помним, что ЛЛ – это источник яда и заражения . Поэтому не будем их устанавливать там, где они могут быть физически разрушены. Что ещё осталось узнать про люминесцентные лампы, о чём предпочитают не писать в сети?
Некоторые особенности ламп дневного света
Начнём со «смерти» такой лампы, которая потребует особого подхода к «похоронам». Наберите в поиске « демеркуризация утилизация ртуть мой город ». Найдите ближайшую точку, которая оказывает такую услугу. Таких точек много, одна-две обязательно окажутся неподалёку. Именно туда нужно сдать перегоревшую ЛЛ, а не выкидывать её в мусорный контейнер. Туда же нужно сдавать энергосберегающие лампы, ртутные, перегоревшие светодиоды и батарейки. Если конечно Вы, человек, который неравнодушен к приятности прогулок около своего дома.
Это один из недостатков, который вызывает замена люминесцентных ламп, но не самый сложный. Куда сложнее ситуация, когда после многолетней эксплуатации «прикипела» пятка лампы к цоколю. Да, ЛЛ служат много лет, и часто случается так, что цоколь просто обрастает отложениями (конденсат, пыль и т.д.), что не позволяет вынуть лампу, не разрушив колбу. Наша рекомендация – пригласите специалистов. Вы должны понимать, что внутри колбы пары ртути и других газов, которые тяжелее воздуха и от которых проветриванием не избавится.
Перепад напряжения выведет из строя примерно 30% ЛЛ. Это нужно иметь в виду, занимаясь обустройством освещения на даче, где падения напряжения не исключения, а скорее правило. Оставшиеся 70% ламп не выйдут из строя. Они просто станут работать с меньшим КПД.
Если подключить ЛЛ в сеть, не соблюдая принцип «фаза – нейтральный провод», то каждая вторая лампа будет мерцать. Даже при последовательном соединении. Это потому, что схема люминесцентной лампы содержит конденсатор, который будет сбрасывать избыток заряда при неверном присоединении балансов.
Даже при соблюдении любых схем подключения люминесцентных ламп, они всё равно будут мерцать и «моргать». Это не потому, что мы плохо разобрались в том, как всё сделать правильно. Это физика электрического пробоя, который не может быть постоянным. Он «искрит», поэтому искрит и лампа. Чем меньше работает балласт (конденсатор), тем лучше он держит уровень «пробоя», и тем меньше мерцание лампы.
Лампа стала заметно мигать? Сначала поставьте на её место другую лампу, которая не мигает. Проверьте напряжение в сети, если всё в порядке - замените стартёр. Если мигание не исчезло – замените ЭПРА целиком.
И не забывайте время от времени вынимать лампу и нулевой шкуркой чистить контакты, это ахиллесова пята этих ламп – окисление контактов, что значительно влияет на её работоспособность.
В заключение хотелось бы отметить, что при всех своих недостатках, ЛЛ имеют множество преимуществ, от длительности сроков эксплуатации и правильного спектра, до безопасности и минимальной нагрузки на электропроводку квартиры. Поэтому, несмотря на завоевание рынка освещения , пока рановато списывать люминесцентные лампы в утиль. Полезнее научится использовать их грамотно и уместно.
Благодаря экономичному электропотреблению, безопасности и высокому сроку службы, в настоящее время светодиоды уверенно вытесняют многие традиционные источники света. В частности, на светодиодные аналоги повсеместно стали заменяться люминесцентные лампы типа T8.
Часто требуется не замена всего светильника целиком, а простая установка светодиодных ламп в уже существующие. И чтобы сделать этот процесс максимально простым, производители светодиодных ламп изготавливают их с таким же цоколем (G13), а размеры полностью повторяют размеры люминесцентных ламп (D=26мм L=600 мм / 900мм / 1200мм / 1500мм / 2400 мм). Остается только немного модернизировать электрическую схему и можно устанавливать светодиодные трубки.
Весь ассортимент этой продукции можете посмотреть в разделе светодиодные лампы g13.
Рассмотрим подробнее особенности установки светодиодных трубок (ламп) Т8 в светильники для люминесцентных ламп.
В зависимости от типа светодиодной лампы существует два варианта установки ламп:
- С подключением ламп на AC 220V (подходит для любой исходной ПРА).
- С подключением ламп на AC 110V (подходит только для светильников с ЭмПРА).
Обратите внимание!
- При установке нескольких ламп в один светильник используйте параллельное подключение. Не допускается последовательное подключение, т.к. это приводит к перепадам напряжения и повреждению драйвера лампы.
- Работы по замене должны выполняться квалифицированным персоналом в соответствии с нормами и требованиями безопасности.
1. Подключение ламп на AC 220V : Первый вариант требует непосредственного питания ламп от электросети 50 Гц 220 В. В этом случае нужно предварительно удалить все элементы пускорегулирующей аппаратуры: электронный блок или элементы электромагнитной ПРА (стартер, дроссель и прочее). Потребляемая мощность светильника будет складываться из суммарной мощности светодиодных ламп.
Порядок действий:
- Удалите люминесцентные лампы.
- Удалите старую электронную схему: а) удалите электронный блок ПРА; б) удалите стартеры и извлеките балласт из электрической цепи, отключите конденсатор, если есть.
- Вставьте светодиодные лампы.
- Включите электропитание.
Схема подключения светодиодной лампы прямого включения 220В
После удаления ПРА светильники должны выглядеть примерно как на фото ниже (переделан светильник на две лампы длиной 1200 мм). Для соединения контактов используйте клеммы.
Светильник люминесцентный типо Арктика 2х36 1200мм в разобранном виде с обратной стороны после удаления всех элементов ПРА для подключения светодиодных ламп на 220В.
2. Подключением ламп на AC 110V :
Второй вариант подразумевает, что в схеме остается электромагнитный балласт, удаляется только стартер, такие светодиодные лампы рассчитаны на подачу напряжения 110 В. При таком подключении потребляемая мощность светильника складывается из суммарной мощности светодиодных ламп и мощности, потребляемой оставшейся ПРА. В этом варианте электроэнергии будет потребляться больше, чем в первом, а значит эффект экономии будет меньше. Кроме того, необходимо предварительно точно определить, какой тип ПРА установлен в светильниках.
Порядок действий:
- Обесточьте светильник, чтобы избежать поражения электрическим током.
- Удалите люминесцентные лампы.
- Удалите стартеры, оставьте балласт (или замените стартеры на специальные для светодиодных ламп).
- Вставьте светодиодные лампы
- Включите электропитание.
Поворотный цоколь. На что еще следует обратить внимание:
В светильниках бывают по-разному установлены патроны: горизонтально, вертикально, а иногда и под углом. Поскольку люминесцентные лампы светят на 360°, то для них неважно, как устанавливать лампу в патрон. Но светодиодные лампы имеют направленный световой поток, поэтому следует обращать внимание на расположение прорези под патрон в цоколе лампы, иначе может оказаться, что светодиодная лампа светит не вниз, а вбок. Наиболее универсальным в этом случае оказывается поворотный цоколь: он подходит к любым светильникам.
Цоколи светодиодных ламп: а) не поворотный б) поворотный.
Надеемся, что наша инструкция помогла Вам правильно выбрать и подключить светодиодные лампы, и сейчас Вы в полной мере используете все преимущества современного светодиодного освещения.
Сегодня наблюдается тенденция к самостоятельному изготовлению для дома различных девайсов, в том числе и осветительных приборов. Это позволяет дать вторую жизнь старым бытовым вещам, а также хорошо сэкономить на покупке новых светильников. Сегодня речь пойдет об изготовлении своими руками люминесцентного светильника.
Сделать такой осветительный прибор или провести ремонт вышедшей из строя лампы сможет любой человек, обладая даже минимальными представлениями об основах электротехники. В этом вам поможет наша статья.
Немного о лампе
Источник света
Люминесцентный светильник представляет собой изделие, в котором в качестве источника света выступает люминесцентная лампа. Принцип действия такого источника света базируется на передаче напряжения с помощью паров ртути. Под влиянием электрозаряда это вещество дает яркое свечение, благодаря чему светильник имеет отменную светоотдачу.
Обратите внимание! Такие лампы выпускаются производителями с различным спектром свечения. Это позволяет устанавливать освещение максимально комфортного спектра.
Такой светильник считается одним из наиболее распространенных моделей в офисных, муниципальных и общественных учреждениях. Но кроме этого он также достаточно широко применяется в частных домах и квартирах. Популярность люминесцентный источник света приобрел благодаря экономичности и яркому свечению. При этом принцип организации осветительного прибора достаточно прост. Поэтому многие сегодня проводят ремонт и его сборку своими руками.
Что нужно знать
Для всех светильников, в состав которых входит люминесцентный источник света, характерна цилиндрическая и прямоугольная формы. Они узкие и имеют маленький вес, поэтому их можно установить в различные места в доме.
Обратите внимание! Такие светильники могут подключаться как к электросети (220 (230) В), так и работать от аккумулятора. Последние модели очень актуальны для загородных домов, гаражей и складских помещений.
Кроме этого данный тип светильников может быть разных модификаций:
- стационарные. В эту группу входят встраиваемые, накладные и потолочные светильники;
- мобильные или переносные. Сюда причисляются подвесные осветительные приборы, которые могут переноситься с одного места на другое или просто ставиться на пол, стол или полку.
Варианты ламп
Сделать оба варианта своими руками достаточно просто. Если немного разобраться в устройстве и знать, как все делать, то даже ремонт подобного светильника не станет для вас большой сложностью. И наша статья постарается вам в этом помочь.
Как и из чего делать
Чаще всего люминесцентные светильники своими руками делают для подсветки аквариумов. Поэтому рассмотрим процесс сборки на этом примере. Для работы таких светильников необходима довольно-таки громоздкая система электроники. Но ее можно заменить на бездроссельную схему, которая займет значительно меньше места. Но она будет менее надежной, чем первый вариант и в скором времени может понадобиться ремонт прибора.
Итак, первое правило сборки — такой аквариумный светильник необходимо сделать так, чтобы он полностью закрывал верхнюю часть аквариума.
Примерный вид
Чтобы сделать люминесцентный осветительный прибор для аквариума своими руками вам понадобится:
- оргстекло;
- люминесцентные лампы;
- клей;
- герметик;
- изоляционная лента;
- провод с таймером и вилкой;
- пластик для каркаса.
Приступаем к работе
Сделать такой осветительный прибор своими руками вы можете любой конструкции. Но лучше выбрать вариант со съемной верхней крышкой, чем отдать предпочтение монолитной конструкции. Так, в случае всего, проводить ремонт будет удобнее. Здесь процесс изготовления предполагает проведение следующих действий:
- делаем по периметру рамку. Ее лучше изготовить двухслойной. Верхний слой будет носить декоративный характер;
- сбираем электросистему лампы по схеме;
Схема сборки
- убедитесь в том, что все контакты надежно изолированы. В ситуации с близким расположением воды это жизненно важно. Для этого на концы ламп следует надеть герметичные наконечники;
Обратите внимание! Герметичные наконечники можно сделать из подручных средств.
- прикрепляем всю электросхему к пластиковой крышке светильника;
- далее с помощью клея фиксируем на нижней стороне прибора прямоугольник из оргстекла;
- сверху надеваем пластиковую крышку, на которой установлены люминесцентные лампы. Крышка должна легко сниматься, чтобы можно было провести ремонт прибора.
Почти готовое изделие
Если крышка имеет черный цвет, то ее необходимо оклеить белой светоотражающей пленкой. Для белого пластика такие манипуляции не проводятся. В местах состыковки светильника с аквариумом необходимо пройтись герметиком, чтобы предотвратить проникновение внутрь осветительного прибора конденсата. Но перед нанесением герметика не забудьте обезжирить стекло.
Второй вариант
Во втором случае мы воспользуемся основой для светильника из ЭПРА (электронный пускорегулирующий аппарат). Такое изделие, выполненное своими руками, отлично подойдет для технических или подсобных помещений. В этой ситуации вам понадобятся:
- корпус. Его можно сделать из подручных материалов (только не берите легко воспламеняемые изделия);
- электронный дроссель или ЭПРА. Лучше использовать второй вариант;
- патроны G13. Они берутся из расчета два патрона на одну лампу;
- медные многожильные провода с сечением 0,2-0,5 кв.мм. Подходят и гибкие (многопроволочные) с залудившими концами;
- винтики и гаечки для установки всех деталей на корпусе.
Делаем светильник следующим образом:
- устанавливаем патроны на требуемом расстоянии друг от друга;
- прикрепляем ЭПРА. Поскольку данный элемент будет нагреваться в процессе работы, то его располагаем таким образом, чтобы на него воздействовало минимум стороннего подогрева;
- соединяем проводами патроны с ЭПРА по схеме;
Схема подключения
- для подключения патрона необходимо снять с его провода изоляцию. Снимать необходимо примерно на 1 см;
- после этого свободный от изоляции провод нужно до упора вставить в отверстие;
Обратите внимание! Согласно специфике выбранного патрона необходимо подбирать провода по сечению. Лучше использовать однопроволочные провода.
- провода в патроны нужно просто вставить, а зажимаются они удерживателями пластинчатой пружины внутри;
- хорошо изолируем все контакты между проводами;
- помещаем все элементы внутрь корпуса и накрываем сверху защитной крышкой. Несмотря на тот факт, что для ламп с низким давлением это не является обязательной процедурой, защита прибора и его содержимого все же нужна. В противном случае возможно повреждение ламп от механических ударов и выход наружу паров ртути, которые очень ядовиты для человеческого организма;
- для лучшей герметизации по всей длине корпуса можно пройтись дополнительно герметиком. Но это в будущем усложнит процесс ремонта и замены вышедших из строя деталей лампы.
Готовый прибор
Подключение такого осветительного прибора будет идти к электросети на 220В. Подобная конструкция позволяет разместить светильники на стене или потолке. Вместе с тем, ремонт для таких изделий будет несколько затруднен из-за способа крепления прибора.Как показывает практика, собранные своими руками по такой схеме люминесцентные светильники работают хорошо и долго. Но для этого необходимо, чтобы температура окружающей среды была в диапазоне от -10 до +30°C.
Подводя итог, можно заключить, что процесс самостоятельной сборки осветительного прибора люминесцентной модели не так уж сложен. Главное здесь следовать схеме подключения всех компонентов электросхемы и четко выполнять последовательность манипуляций.
Как самому сделать ангельские глазки для ваза?
ukyut.ru